Log-signatures and Neural Rough Differential Equations

James Foster

(joint with James Morrill, Cristopher Salvi, Patrick Kidger and Terry Lyons) DataSıg and Oxford

A rough path between mathematics and data science

e Alan Turing Imperial College stitute London

Log-signatures and Neural RDEs

1 Signatures and Log-signatures

2 Neural Controlled Differential Equations

③ Neural Rough Differential Equations

4 Conclusion

6 References

As we've already seen, the *signature* is a collection of features $\text{Sig}_{a,b}(X)$ that we define from a continuous path $X : [0, T] \to \mathbb{R}^d$ (of finite length).

Definition (Depth-N Signature)

The depth-N signature transform of X over the interval [a, b] is given by

$$\operatorname{Sig}_{a,b}^{N}(X) = \left(\left\{ S_{a,b}^{i}(X) \right\}_{i=1}^{d}, \left\{ S_{a,b}^{i,j}(X) \right\}_{i,j=1}^{d}, \cdots, \left\{ S_{a,b}^{i_{1},\cdots,i_{N}}(X) \right\}_{i_{1},\cdots,i_{N}=1}^{d} \right)$$
(1)

where

$$S_{a,b}^{i_1, \cdots, i_k}(X) = \int \cdots \int dX_{t_1}^{i_1} dX_{t_2}^{i_2} \cdots dX_{t_k}^{i_k}.$$

Is there redundancy in this feature set? If so, how can it be compressed?

200

Already with d = 2 and N = 2, we can see there is some redundancy

as a simple application of integration by parts yields

$$\iint_{a < t_1 < t_2 < b} \mathrm{d}X_{t_1}^1 \mathrm{d}X_{t_2}^2 + \iint_{a < t_1 < t_2 < b} \mathrm{d}X_{t_1}^2 \mathrm{d}X_{t_2}^1 = (X_b^1 - X_a^1)(X_b^2 - X_a^2).$$

Definition (Depth-2 Log-signature)

The depth-2 log-signature transform of X is given by

$$\operatorname{LogSig}_{a,b}^{2}(X) = \left(\left\{ X_{b}^{i} - X_{a}^{i} \right\}_{1 \le i \le d}, \left\{ \frac{1}{2} \left(\iint_{a < t_{1} < t_{2} < b} dX_{t_{1}}^{i} dX_{t_{2}}^{j} - \iint_{a < t_{1} < t_{2} < b} dX_{t_{1}}^{j} dX_{t_{2}}^{i} \right) \right\}_{1 \le i < j \le d} \right)$$
(2)

Figure: Illustration of depth-2 signature and log-signature (taken from [1]).

James Foster (DataSig and Oxford)

Removing redundancy at depth-3 gives log-signature terms of the form:

$$\frac{1}{6} \iiint_{a < t_1 < t_2 < t_3 < b} \left(dX_{t_1}^i \left(dX_{t_2}^j dX_{t_3}^k - dX_{t_2}^k dX_{t_3}^j \right) - \left(dX_{t_1}^j dX_{t_2}^k - dX_{t_1}^k dX_{t_2}^j \right) dX_{t_3}^i \right).$$

Log-signatures have an interesting computational and algebraic story!

- P. Kidger and T. Lyons. Signatory: differentiable computations of the signature and logsignature transforms, on both CPU and GPU. In International Conference on Learning Representations, 2021. https://github.com/patrick-kidger/signatory
- J. Diehl, T. Lyons, R. Preiß and J. Reizenstein. *Areas of areas generate the shuffle algebra*. arXiv:2002.02338, 2020.
- J. Reizenstein. Calculation of Iterated-Integral Signatures and Log Signatures. arXiv:1712.02757, 2017.

Log-signatures as a method for lossy compression

Figure: Illustration of depth-2 log-signature (taken from [6]).

We can reduce the length of a time series by computing log-signatures (locally) over different intervals. This gives a length/channel trade-off.

Using log-signatures as a preprocessing step can improve performance for ML models such as RNNs [1, 5] and neural differential equations [6].

We focus on the latter, which we call Neural Rough Differential Equations

Signatures and Log-signatures

2 Neural Controlled Differential Equations

③ Neural Rough Differential Equations

4 Conclusion

5 References

Neural Controlled Differential Equations (NCDEs)

We observe $\mathbf{x} = ((t_0, x_0), (t_1, x_1), \cdots, (t_n, x_n))$, with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^d$.

Let $X : [0, n] \to \mathbb{R}^{d+1}$ be a continuous path that interpolates this data, so $X(i) = (t_i, x_i)$. (e.g. cubic splines [7] and piecewise linear/rectilinear [8])

The NCDE model involves learnt functions ζ_{θ} , f_{θ} and a linear map ℓ_{θ} with

$$z(0) = \zeta_{\theta}(t_0, x_0), \quad z(t) = z(0) + \int_0^t f_{\theta}(z(s)) \, \mathrm{d}X(s), \tag{3}$$

and the output is either $\ell_{\theta}(z(T))$ or $\{\ell_{\theta}(z(t))\}$.

The CDE model (3) is discretized, the output is fed into a loss function $(L^2, \text{cross entropy}, \text{etc})$ and trained using stochastic gradient descent.

Here ζ_{θ} and f_{θ} are neural nets, z is hidden state: <u>Continuous Time RNN</u>

500

Neural Controlled Differential Equations (NCDEs)

Figure: Illustration of the RNN and NCDE models (taken from [7]).

What does rough path theory tell us about log-signatures / CDEs?

CDE solution \approx Truncated Taylor expansion of CDE solution

= Linear functional applied to $\operatorname{Sig}^{N}(X)$

- = Linear functional applied to exponential of $\text{LogSig}^{N}(X)$
- \approx Exponential of linear functional applied to $\text{LogSig}^{N}(X)$
- = Solving an ODE obtained from f_{θ} and $\text{LogSig}^{N}(X)$

Conclusion

Log-signatures and Neural CDEs are a natural fit!

James Foster (DataSig and Oxford)

- Signatures and Log-signatures
- 2 Neural Controlled Differential Equations
- 3 Neural Rough Differential Equations
- 4 Conclusion
- **5** References

Neural Rough Differential Equations (NRDEs)

Definition (Neural RDE)

We pick a (uniform) partition $\{r_i\}$ of $[t_0, t_n]$ and depth hyperparameter *N*. The Neural RDE model follows the Neural CDE formulation, but with

$$z(t) = z(0) + \int_0^t g_{\theta,X}(z(s),s) \,\mathrm{d}s,$$
(4)

where

Figure: Illustration of the NCDE and NRDE models (taken from [6]).

James Foster (DataSig and Oxford)

7 July 2021 11/18

Classification on time series with a length of 17K

Model	Step	Accuracy (%)	Time (Hrs)	Mem (Mb)
ODE-RNN (folded)	1	_	_	_
	4	35.0 ± 1.5	0.8	3629.3
	32	32.5 ± 1.5	0.1	532.2
	128	47.9 ± 5.3	0.0	200.8
NCDE	1	62.4 ± 12.1	22.0	176.5
	4	66.7 ± 11.8	5.5	46.6
	32	64.1 ± 14.3	0.5	8.0
	128	48.7 ± 2.6	0.1	3.9
NRDE (depth 2)	4	$\textbf{83.8} \pm \textbf{3.0}$	2.4	180.0
	32	67.5 ± 12.1	0.7	28.1
	128	$\textbf{76.1} \pm \textbf{5.9}$	0.2	7.8
NRDE (depth 3)	4	76.9 ± 9.2	2.8	856.8
	32	$\textbf{75.2} \pm \textbf{3.0}$	0.6	134.7
	128	68.4 ± 8.2	0.1	53.3

Table: EigenWorms dataset: mean \pm standard deviation of test set accuracy measured over three runs. Bold denotes the best score for a given step size.

James Foster (DataSig and Oxford)

- Signatures and Log-signatures
- 2 Neural Controlled Differential Equations
- ③ Neural Rough Differential Equations
- 4 Conclusion

6 References

Conclusion

- The log-signature is a compressed version of the signature
 - nice geometric interpretation
 - reduces length of a time series, but increases number of channels
 - can improve performance for RNNs [1, 5] and Neural CDEs [6]
- CDEs are naturally related to log-signatures and ODEs ("log-ODE")
- Neural RDEs combine the strengths of NCDEs and log-signatures
 - memory efficient, continuous time and suitable for long time series
 - when step = 1 and depth = 1, reduces to usual Neural CDE model
- Code available
 - https://github.com/patrick-kidger/signatory
 - https://github.com/patrick-kidger/torchcde
 - https://github.com/jambo6/neuralRDEs

Thank you for your attention!

and for more details, see

J. Morrill, C. Salvi, P. Kidger, J. Foster and T. Lyons. *Neural Rough Differential Equations for Long Time Series*. Proceedings of the 38th International Conference on Machine Learning (ICML), 2021.

- Signatures and Log-signatures
- 2 Neural Controlled Differential Equations
- ③ Neural Rough Differential Equations
- 4 Conclusion

References I

- J. Morrill, A. Fermanian, P. Kidger and T. Lyons. A Generalised Signature Method for Multivariate Time Series Feature Extraction. arXiv:2006.00873, 2020.
- P. Kidger and T. Lyons. Signatory: differentiable computations of the signature and logsignature transforms, on both CPU and GPU. In International Conference on Learning Representations, 2021. https://github.com/patrick-kidger/signatory
- J. Diehl, T. Lyons, R. Preiß and J. Reizenstein. Areas of areas generate the shuffle algebra. arXiv:2002.02338, 2020.
- J. Reizenstein. Calculation of Iterated-Integral Signatures and Log Signatures. arXiv:1712.02757, 2017.

References II

- S. Liao, T. Lyons, W. Yang and H. Ni. Learning stochastic differential equations using RNN with log signature features. arXiv:1908.08286, 2019.
- J. Morrill, C. Salvi, P. Kidger, J. Foster and T. Lyons. *Neural Rough Differential Equations for Long Time Series*. Proceedings of the 38th International Conference on Machine Learning (ICML), 2021.
- P. Kidger, J. Morrill, J. Foster and T. Lyons. *Neural Controlled Differential Equations for Irregular Time Series*. In Advances in Neural Information Processing Systems, 2020.
- J. Morrill, P. Kidger, L. Yang and T. Lyons. *Neural Controlled Differential Equations for Online Prediction Tasks*. arXiv:2106.11028, 2021.