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Signatures and Log-signatures

As we've already seen, the signature is a collection of features Sig, ,(X)
that we define from a continuous path X: [0, 7] — R? (of finite length).

Definition (Depth-N Signature)

The depth-N signature transform of X over the interval [a, b] is given by
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Is there redundancy in this feature set? If so, how can it be compressed?
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Signatures and Log-signatures

Already with d = 2 and N = 2, we can see there is some redundancy
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as a simple application of integration by parts yields
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Signatures and Log-signatures

Definition (Depth-2 Log-signature)
The depth-2 log-signature transform of X is given by
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Figure: Illustration of depth-2 signature and log-signature (taken from [1]).
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Signatures and Log-signatures
Removing redundancy at depth-3 gives log-signature terms of the form:
1 (] dxk K 3y vk KAy \ayi
5 / / / (X, (i, — k) — (dx] o — dxfdx])dxy, ).
a<ti<ta<tz<b
Log-signatures have an interesting computational and algebraic story!

[§ P.Kidger and T. Lyons. Signatory: differentiable computations of
the signature and logsignature transforms, on both CPU and GPU.
In International Conference on Learning Representations, 2021.

https://github.com/patrick-kidger/signatory

[4 J.Diehl, T. Lyons, R. Preif3 and J. Reizenstein. Areas of areas
generate the shuffle algebra. arXiv:2002.02338, 2020.

[§ J.Reizenstein. Calculation of Iterated-Integral Signatures and
Log Signatures. arXiv:1712.02757, 2017.
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Log-signatures as a method for lossy compression

2 Data, x 5 Path, X Log-signature
X X
— 1
° A - sz }Deplh 1
- =
o . d o] N A ax
= Ay —A_ |Depn2
© e} o A o
© ° — - oL Ax —_—
Q
o o o o .
Q Axd 5 AX? Higher ord:
X! X!

Figure: Illustration of depth-2 log-signature (taken from [6]).

We can reduce the length of a time series by computing log-signatures
(locally) over different intervals. This gives a length/channel trade-off.

Using log-signatures as a preprocessing step can improve performance
for ML models such as RNNs [1, 5] and neural differential equations [6].

We focus on the latter, which we call Neural Rough Differential Equations
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Neural Controlled Differential Equations (NCDEs)

We observe x = ((to,Xo), (t1,X1), -, (tn, Xn)), with t; € R and x; € RY.

Let X : [0,n] — R¥*! be a continuous path that interpolates this data, so
X(i) = (t;,x;). (e.g. cubic splines [7] and piecewise linear/rectilinear [8])

The NCDE model involves learnt functions (g, fg and a linear map £y with
t
2(0) = Go(to, xo), 2(t) = 2(0) + / fo(z(s)) dX(s), (3)
0
and the output is either €y(z(T)) or {€g(z(1))}.

The CDE model (3) is discretized, the output is fed into a loss function
(L2, cross entropy, etc) and trained using stochastic gradient descent.

Here (4 and fy are neural nets, z is hidden state: Continuous Time RNN
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Neural Controlled Differential Equations (NCDEs)
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Figure: Illustration of the RNN and NCDE models (taken from [7]).

CDE solution ~ Truncated Taylor expansion of CDE solution
= Linear functional applied to SigN(X)
= Linear functional applied to exponential of LogSigN(X)
~ Exponential of linear functional applied to LogSig"(X)
= Solving an ODE obtained from fy and LogSigN(X)

Conclusion
Log-signatures and Neural CDEs are a natural fit!
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Neural Rough Differential Equations (NRDEs)
Definition (Neural RDE)

We pick a (uniform) partition {r;} of [fo, t;] and depth hyperparameter N.
The Neural RDE model follows the Neural CDE formulation, but with

t
z(t) = z(0) +/O 8o.x(2(s),s)ds, 4)

- Logsigy . (X)

where g x(2,5) = fy(2) , for s € [r,riy1).
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Figure: Illustration of the NCDE and NRDE models (taken from [6]).
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Classification on time series with a length of 17K

Model Step Accuracy(%) Time (Hrs) Mem (Mb)
1 — — —
ODE-RNN 4 35.0£1.5 0.8 3629.3
(folded) 32 325+15 0.1 532.2
128 479+£53 00 200.8
1 62.4+12.1 22.0 176.5
4 66.7 +11.8 5.5 46.6
NCDE 35 ea1+143 05 8.0
128 48.7 &£ 2.6 0.1 3.9
NRDE 4 83.8 +3.0 2.4 180.0
(depth 2) 32 67.5+121 0.7 28.1
PR 128 76459 02 78
NRDE 4 76.9+£9.2 2.8 856.8
(depth 3) 32 75.2 + 3.0 0.6 134.7
128 68.4£8.2 0.1 53.3

Table: EigenWorms dataset: mean =+ standard deviation of test set accuracy
measured over three runs. Bold denotes the best score for a given step size.
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Conclusion

® The log-signature is a compressed version of the signature
— nice geometric interpretation
— reduces length of a time series, but increases number of channels
— can improve performance for RNNs [1, 5] and Neural CDEs [6]

e CDEs are naturally related to log-signatures and ODEs (“log-ODE”)

e Neural RDEs combine the strengths of NCDEs and log-signatures
— memory efficient, continuous time and suitable for long time series
— when step = 1 and depth = 1, reduces to usual Neural CDE model

e Code available
— https://github.com/patrick-kidger/signatory
— https://github.com/patrick-kidger/torchcde
- https://github.com/jambo6/neuralRDEs
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https://github.com/jambo6/neuralRDEs

Thank you
for your attention!

and for more details, see

[4 J. Morrill, C. Salvi, P. Kidger, J. Foster and T. Lyons. Neural Rough
Differential Equations for Long Time Series. Proceedings of the 38th
International Conference on Machine Learning (ICML), 2021.
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