
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Log-signatures and Neural
Rough Differential Equations
James Foster

(joint with James Morrill, Cristopher Salvi,
Patrick Kidger and Terry Lyons)
DataSıg and Oxford

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 1 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

1 Signatures and Log-signatures

2 Neural Controlled Differential Equations

3 Neural Rough Differential Equations

4 Conclusion

5 References

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 2 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Signatures and Log-signatures

As we’ve already seen, the signature is a collection of features Siga,b(X)
that we define from a continuous path X : [0, T] → Rd (of finite length).

Definition (Depth-N Signature)
The depth-N signature transform of X over the interval [a,b] is given by

SigNa,b(X) =
({
S ia,b(X)

}d
i=1

,
{
S i, ja,b(X)

}d
i , j=1

, · · · ,
{
Si1 , ··· , iNa,b (X)

}d
i1,··· , iN=1

)
(1)

where
S i1,··· , ika,b (X) =

∫
· · ·

∫
a<t1<t2<···<tk<b

dX i1t1 dX
i2
t2 · · ·dX

ik
tk .

Is there redundancy in this feature set? If so, how can it be compressed?

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 3 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Signatures and Log-signatures

Already with d = 2 and N = 2, we can see there is some redundancy

න ሺ𝑋𝑡

1 − 𝑋𝑎
1ሻ d𝑋𝑡

2
𝑏

𝑎

න ሺ𝑋𝑡
2 − 𝑋𝑎

2ሻ d𝑋𝑡
1

𝑏

𝑎

𝑋1

𝑋2

𝑋1

𝑋2

as a simple application of integration by parts yields∫∫
a<t1<t2<b

dX1t1dX
2
t2 +

∫∫
a<t1<t2<b

dX2t1dX
1
t2 =

(
X1b − X1a

)(
X2b − X2a

)
.

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 4 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Signatures and Log-signatures

Definition (Depth-2 Log-signature)
The depth-2 log-signature transform of X is given by

LogSig2
a,b(X) =

({
X i
b − X i

a
}
1≤ i≤ d , (2){

1

2

(∫∫
a<t1<t2<b

dX i
t1dX

j
t2 −

∫∫
a<t1<t2<b

dX j
t1dX

i
t2

)}
1≤ i< j≤ d

)
A Generalised Signature Method for Multivariate Time Series Feature Extraction

Signature

X1

X2

S(1,2)

S(2,1)

∆X1

∆X2

∆X1

∆X2A−
A+

Log-signature

X1

X2

Figure 1. Geometric depiction of the depth-2 signature and log-signature. The depth-1 term of both transforms equate to the
displacements of the path over the interval in each coordinate, these being ∆X1,2. Left: The signature. Depth-2 terms S(1,2), S(2,1)

correspond to the areas of the blue and orange regions respectively. Right: The log-signature. Only one depth-2 term which is given by
the signed area A+ −A−. This is known as the Lévy area of the path.

To the best of our knowledge, no comprehensive studies
exist that collate and combine the most common method
variations found in the literature and assemble them under
a common mathematical framework. Additionally, no
baseline signature model has ever been tested against other
time series classification baselines. Our goal will be to
address both of these issues, alongside the development of
an open source implementation, so as to make the methods
more accessible to a wider audience.

Contributions We introduce a generalised signature
method that contains the many existing variations as special
cases. In doing so we are able to understand their
conceptual groupings into what we term augmentations,
windows, transforms and rescalings. This involves a
comprehensive review of the existing variations across the
literature. By understanding their commonality, we are
then able to combine different variations, and propose new
options that fit into this framework.

We go on to examine which choices within this framework
are most important to success by performing an extensive
empirical study across 26 datasets. To the best of our
knowledge this is the first study of this type.

In doing so, we are then able to produce a canonical
signature pipeline. This represents a domain agnostic
starting point that may then be adapted for the task at
hand. We show that the performance of this canonical
pipeline is comparable to current state-of-the-art classifiers
for multivariate time series classification, including deep
recurrent and convolutional neural networks. This has led
to the implementation of this generalised approach in the
open source [redacted] package.

2. Context
2.1. Background theory

We begin with a few mathematical definitions necessary
throughout the article.

Definition 1. Let d ∈ N, we denote the space of time series
over Rd as

S(Rd) = {(x1, . . . , xn) |xi ∈ Rd, n ∈ N, n ≥ 1}.

If d = 1, then x is a univariate time series, whereas
if d > 1, x is a multivariate time series. Given x =
(x1, . . . , xn) ∈ S(Rd), n is called the length of x and d
its dimension or number of channels. We assume that in
addition to the array of values x ∈ S(Rd), we have access
to a vector of increasing time stamps t = (t1, . . . , tn).
If the data is regularly sampled, then t can be set to t =
(1, . . . , n), which will often be the case.

We consider a dataset to be a collection of such samples.
Note that the time stamps t for each sample may be
different, and the sample lengths n can vary. That is,
we accept varying length and irregular sampling without
modification. We are now in a position to define the
signature of a time series.

Definition 2. Let x ∈ S(Rd) and t = (t1, . . . , tn) its
associated timestamps. Let X = (X1

t , . . . , X
d
t)t∈[t1,tn]

be a piecewise linear interpolation of x such that for any
i ∈ {1, . . . , n}, Xti = xi. Then the depth-N signature
transform of x is the vector defined by

SigN (x) =
(
{S(x)(i)}di=1,

{S(x)(i,j)}di,j=1,

. . . ,

{S(x)(i1,...,iN)}di1,...,iN=1

)
∈ R

dN+1−1
d−1

where for any (i1, . . . , ik) ∈ {1, . . . , d}k,

S(x)(i1,...,ik) =

∫
· · ·
∫

t1≤u1<···<uk≤tn

dXi1
u1
. . . dXik

uk
∈ R.

While this definition may seem somewhat technical, there
are several intuitions that can be made with regard to the

Figure: Illustration of depth-2 signature and log-signature (taken from [1]).

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 5 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Signatures and Log-signatures
Removing redundancy at depth-3 gives log-signature terms of the form:
1

6

∫∫∫
a<t1<t2<t3<b

(
dX i

t1
(
dX j

t2dX
k
t3 − dX k

t2dX
j
t3
)
−
(
dX j

t1dX
k
t2 − dX k

t1dX
j
t2
)
dX i

t3

)
.

Log-signatures have an interesting computational and algebraic story!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

References I

J. Morrill, A. Fermanian, P. Kidger and T. Lyons. A Generalised
Signature Method for Multivariate Time Series Feature Extraction.
arXiv:2006.00873, 2020.

P. Kidger and T. Lyons. Signatory: differentiable computations of
the signature and logsignature transforms, on both CPU and GPU.
In International Conference on Learning Representations, 2021.
https://github.com/patrick-kidger/signatory

J. Diehl, T. Lyons, R. Preiß and J. Reizenstein. Areas of areas
generate the shuffle algebra. arXiv:2002.02338, 2020.

J. Reizenstein. Calculation of Iterated-Integral Signatures and
Log Signatures. arXiv:1712.02757, 2017.

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 19 / 20

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 6 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Log-signatures as a method for lossy compression
Neural Rough Differential Equations for Long Time Series

Data, x

X1

X2

∆X1
∆X2

A−
A+

Path, X

X1

X2

= ∆X1

= ∆X2

= A+ − A−

..
..

..

Log-signature

Depth 1

Depth 2

Higher order

Figure 2. Geometric intuition for the first two levels of the log-signature for a 2-dimensional path. The depth 1 terms correspond to the
change in each of the coordinates over the interval. The depth 2 term corresponds to the Lévy area of the path, this being the signed area
between the curve and the chord joining its start and endpoints.

2. Theory
We begin with an exposition on the motivating theory. Our
description here will focus on the high-level intuitions. For
a full technical description we refer to the appendices; see
also section 7.1 of (Friz & Victoir, 2010).

Readers primarily interested in practical applications should
feel free to skip to section 3.

2.1. Signatures and Log-signatures

The signature transform is a map from paths to a vector of
real values, specifying a collection of statistics about the
path. It is a central component of the theory of controlled
differential equations since these statistics describe how the
data interacts with dynamical systems. The log-signature
is then formed by representing the same information in a
compressed format.

Signature transform Let X = (X1, ..., Xd) : [0, T] →
Rd be continuous and piecewise differentiable.1 Letting2

Si1,...ika,b (X) =

∫
...

∫
a<t1<...<tk<b

k∏
j=1

dXij

dt
(tj)dtj , (6)

then the depth-N signature transform of X is given by

SigNa,b(X) =
({
Sia,b(X)(i)

}d
i=1

,
{
Si,ja,b(X)

}d
i,j=1

,

. . . ,
{
Si1,...,iNa,b (X)

}d
i1,...,iN=1

)
. (7)

This definition is independent of the choice of T and ti, by
change of variables in equation (6).

We see that the signature is a collection of integrals, with
each integral defining a real value. It is a graded sequence of

1For our purposes later it will typically be a linear interpolation
of a time series.

2This is a slightly simplified definition, and the signature is
often instead defined using the notation of stochastic calculus; for
completeness see Definition A.2.

statistics that characterise the input time series. In particular,
(Hambly & Lyons, 2010) show that under mild conditions,
Sig∞(X) completely determines X up to translation, pro-
vided time is included as a channel in X .

Log-signature transform The signature transform has
some redundancy: a little algebra shows that for example
S1,2
a,b (X)+S2,1

a,b (X) = S1
a,b(X)S2

a,b(X), so that we already
know S2,1

a,b (X) provided we know the other three quantities.

The log-signature transform is then essentially obtained by
computing the signature transform, and throwing out redun-
dant terms, to obtain some (nonunique) minimal collection.

Starting from the depth-N signature transform and remov-
ing some fixed set of redundancies produces the depth-N
log-signature transform. We fix some set of redundancies
throughout (essentially corresponding to a choice of basis),
and denote this LogSigNa,b. This is a map from Lipschitz
continuous paths [a, b]→ Rv into Rβ(v,N), where β(v,N)
denotes the dimension of the log-signature (see Appendix
A).

Geometric intuition In figure 2 we provide a geometric
intuition for the first two levels of the log-signature, which
have natural geometric interpretations.

The depth 1 terms correspond to the changes in each channel
over the interval; this is ∆X1,∆X2 in the figure. The
depth 2 term corresponds to the signed area in between
the chord joining the endpoints and the path itself; this
corresponds to A+ −A− in the figure. Higher order terms
correspond to higher order integrals and iterated areas in
higher dimensional spaces, and become a little more difficult
to visualise.

(Log-)Signatures and CDEs In Figure 3 we give the
equations for how log-signatures arise in the solution of
CDEs. Begin by letting Df denote the Jacobian of a func-
tion f . Now expand equation (1) by linearising the vector
field f and neglecting higher order terms.

Figure: Illustration of depth-2 log-signature (taken from [6]).

We can reduce the length of a time series by computing log-signatures
(locally) over different intervals. This gives a length/channel trade-off.

Using log-signatures as a preprocessing step can improve performance
for ML models such as RNNs [1, 5] and neural differential equations [6].

We focus on the latter, which we call Neural Rough Differential Equations

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 7 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

1 Signatures and Log-signatures

2 Neural Controlled Differential Equations

3 Neural Rough Differential Equations

4 Conclusion

5 References

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 8 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Neural Controlled Differential Equations (NCDEs)

We observe x = ((t0, x0), (t1, x1), · · · , (tn, xn)), with ti ∈ R and xi ∈ Rd.

Let X : [0,n] → Rd+1 be a continuous path that interpolates this data, so
X(i) = (ti, xi). (e.g. cubic splines [7] and piecewise linear/rectilinear [8])

The NCDEmodel involves learnt functions ζθ, fθ and a linear map ℓθ with

z(0) = ζθ(t0, x0), z(t) = z(0) +
∫ t

0
fθ(z(s))dX(s), (3)

and the output is either ℓθ(z(T)) or {ℓθ(z(t))}.

The CDE model (3) is discretized, the output is fed into a loss function
(L2, cross entropy, etc) and trained using stochastic gradient descent.

Here ζθ and fθ are neural nets, z is hidden state: Continuous Time RNN

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 9 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Neural Controlled Differential Equations (NCDEs)

t1 t2 t3 · · · tn
Time

x1
x2 x3

xn Data x

Hidden state z

t1 t2 t3 · · · tn
Time

x1
x2 x3

xn Data x

Path X

Hidden state z

Figure 1: Some data process is observed at times t1, . . . , tn to give observations x1, . . . , xn. It is
otherwise unobserved. Left: Previous work has typically modified hidden state at each observation,
and perhaps continuously evolved the hidden state between observations. Right: In contrast, the
hidden state of the Neural CDE model has continuous dependence on the observed data.

3 Method

Suppose for simplicity that we have a fully-observed but potentially irregularly sampled time series
x = ((t0, x0), (t1, x1), . . . , (tn, xn)), with each ti ∈ R the timestamp of the observation xi ∈ Rv,
and t0 < · · · < tn. (We will consider partially-observed data later.)

Let X : [t0, tn] → Rv+1 be the natural cubic spline with knots at t0, . . . , tn such that Xti = (xi, ti).
As x is often assumed to be a discretisation of an underlying process, observed only through x,
then X is an approximation to this underlying process. Natural cubic splines have essentially the
minimum regularity for handling certain edge cases; see Appendix A for the technical details.

Let fθ : R
w → Rw×(v+1) be any neural network model depending on parameters θ. The value w is a

hyperparameter describing the size of the hidden state. Let ζθ : R
v+1 → Rw be any neural network

model depending on parameters θ.

Then we define the neural controlled differential equation model as the solution of the CDE

zt = zt0 +

∫ t

t0

fθ(zs)dXs for t ∈ (t0, tn], (3)

where zt0 = ζθ(x0, t0). This initial condition is used to avoid translational invariance. Analogous
to RNNs, the output of the model may either be taken to be the evolving process z, or the terminal
value ztn , and the final prediction should typically be given by a linear map applied to this output.

The resemblance between equations (1) and (3) is clear. The essential difference is that equation (3)
is driven by the data process X , whilst equation (1) is driven only by the identity function ι : R → R.
In this way, the Neural CDE is naturally adapting to incoming data, as changes in X change the local
dynamics of the system. See Figure 1.

3.1 Universal Approximation

It is a famous theorem in CDEs that in some sense they represent general functions on streams [22,
Theorem 4.2], [23, Proposition A.6]. This may be applied to show that Neural CDEs are universal
approximators, which we summarise in the following informal statement.

Theorem (Informal). The action of a linear map on the terminal value of a Neural CDE is a
universal approximator from {sequences in Rv} to R.

Theorem B.14 in Appendix B gives a formal statement and a proof, which is somewhat technical.
The essential idea is that CDEs may be used to approximate bases of functions on path space.

3.2 Evaluating the Neural CDE model

Evaluating the Neural CDE model is straightforward. In our formulation above, X is in fact not just
of bounded variation but is differentiable. In this case, we may define

gθ,X(z, s) = fθ(z)
dX

ds
(s), (4)

3

Figure: Illustration of the RNN and NCDE models (taken from [7]).

What does rough path theory tell us about log-signatures / CDEs?
CDE solution ≈ Truncated Taylor expansion of CDE solution

= Linear functional applied to SigN(X)
= Linear functional applied to exponential of LogSigN(X)
≈ Exponential of linear functional applied to LogSigN(X)
= Solving an ODE obtained from fθ and LogSigN(X)

Conclusion
Log-signatures and Neural CDEs are a natural fit!
James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 9 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

1 Signatures and Log-signatures

2 Neural Controlled Differential Equations

3 Neural Rough Differential Equations

4 Conclusion

5 References

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 10 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Neural Rough Differential Equations (NRDEs)
Definition (Neural RDE)
We pick a (uniform) partition {ri} of [t0, tn] and depth hyperparameter N.
The Neural RDE model follows the Neural CDE formulation, but with

z(t) = z(0) +
∫ t

0
gθ,X(z(s), s)ds, (4)

where gθ,X(z, s) = f̂θ(z)
LogSigNri,ri+1

(X)
ri+1 − ri

, for s ∈ [ri, ri+1).Neural Rough Differential Equations for Long Time Series

t0 tm· · ·
Time

Data x

Path X

Hidden state Zt

Integration
steps

r0 r1 r2 r3 rm−2 rm−1 rm· · ·

· · ·

Time
Data x

Path X

LogSigri,ri+1
(X)

Log-signature path

Hidden state Zt

Integration
steps

Figure 4. An overview of the log-ODE method applied to Neural RDEs. Left: A single step (CDE or RDE) model. The path X is quickly
varying, meaning a lot of integration steps are needed to resolve it. Right: The Neural RDE utilising the log-ODE method with integration
steps larger than the discretisation of the data. The path of log-signatures is more slowly varying (in a higher dimensional space), and
needs fewer integration steps to resolve.

3.2. Neural RDEs Generalise Neural CDEs

Suppose we happened to choose ri = ti and ri+1 = ti+1.
Then the log-signature term is

LogSigNti,ti+1
(X)

ti+1 − ti
Recall that the depth 1 log-signature is just the increment of
the path over the interval. So this becomes

∆X[ti,ti+1]

ti+1 − ti
=

dX linear

dt
(s) for s ∈ [ti, ti+1),

that is to say the same as obtained via the original method
if using linear interpolation. In this way the Neural RDE
approach generalises the existing Neural CDE approach.

3.3. Discussion

Length/Channel Trade-Off The sequence of log-
signatures is now of length m, which was chosen to be
much smaller than n. As such, it is much more slowly vary-
ing over the interval [t0, tn] than the original data, which
was of length n. The differential equation it drives is better
behaved, and so larger integration steps may be used in the
numerical solver. This is the source of the speed-ups of this
method; we observe typical speed-ups by a factor of about
10.

Memory Efficiency Long sequences need large amounts
of memory to perform backpropagation-through-time
(BPTT). As with the original Neural CDEs, the log-ODE
approach supports memory-efficient backpropagation via
the adjoint equations. If the vector field fθ requires O(H)
memory, and the time series is of total length T , then back-
propagating through the solver requires O(HT) memory
whilst the adjoint method requires only O(H + T); see
Kidger et al. (2020).

The Log-signature as a Preprocessing Step When train-
ing a model in practice, the log-signatures need only be
computed once and thus the computation can be performed
as part of data preprocessing. Log-signatures can also be
easily computed in an online fashion, making the model
suitable for such problems.

Structure of f̂ The description here aligns with the log-
ODE scheme described in equation (8). There is one dis-
crepancy: we do not attempt to model the specific structure
of f̂ . This is in principle possible, but is computationally
expensive. Instead, we model f̂ as a neural network directly.
This need not necessarily exhibit the requisite structure,
but as neural networks are universal approximators (Pinkus,
1999; Kidger & Lyons, 2020a) then this approach is at least
as general from a modelling perspective.

Ease of Implementation This method is straightforward
to implement using pre-existing tools.

There are standard libraries available for computing the log-
signature transform: we use Signatory (Kidger & Lyons,
2020b). As equation (10) is an ODE, it may be solved
directly using tools such as torchdiffeq (Chen, 2018).

As an alternative, we note that the form of equation (9)
is that of equation (5), with the driving path taken to be
piecewise linear in log-signature space. Computation of the
log-signatures can therefore be considered as a preprocess-
ing step, producing a sequence of log-signatures. From this
we may construct a path in log-signature space, and apply
existing tools for neural CDEs. (Rather than tools for neural
ODEs.) This idea is summarised in figure 4. We make this
approach available in the [redacted] open source project.

Applications In principle, a Neural RDE may be applied
to solve any Neural CDE problem. However, we typically

Figure: Illustration of the NCDE and NRDE models (taken from [6]).

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 11 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Classification on time series with a length of 17K
Model Step Accuracy (%) Time (Hrs) Mem (Mb)

1 – – –
ODE-RNN 4 35.0 ± 1.5 0.8 3629.3
(folded) 32 32.5 ± 1.5 0.1 532.2

128 47.9 ± 5.3 0.0 200.8
1 62.4 ± 12.1 22.0 176.5

NCDE 4 66.7 ± 11.8 5.5 46.6
32 64.1 ± 14.3 0.5 8.0
128 48.7 ± 2.6 0.1 3.9

NRDE
(depth 2)

4 83.8 ± 3.0 2.4 180.0
32 67.5 ± 12.1 0.7 28.1
128 76.1 ± 5.9 0.2 7.8

NRDE
(depth 3)

4 76.9 ± 9.2 2.8 856.8
32 75.2 ± 3.0 0.6 134.7
128 68.4 ± 8.2 0.1 53.3

Table: EigenWorms dataset: mean ± standard deviation of test set accuracy
measured over three runs. Bold denotes the best score for a given step size.

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 12 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

1 Signatures and Log-signatures

2 Neural Controlled Differential Equations

3 Neural Rough Differential Equations

4 Conclusion

5 References

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 13 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Conclusion

• The log-signature is a compressed version of the signature
– nice geometric interpretation
– reduces length of a time series, but increases number of channels
– can improve performance for RNNs [1, 5] and Neural CDEs [6]

• CDEs are naturally related to log-signatures and ODEs (“log-ODE”)

• Neural RDEs combine the strengths of NCDEs and log-signatures
– memory efficient, continuous time and suitable for long time series
– when step = 1 and depth = 1, reduces to usual Neural CDE model

• Code available
– https://github.com/patrick-kidger/signatory
– https://github.com/patrick-kidger/torchcde
– https://github.com/jambo6/neuralRDEs

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 14 / 18

https://github.com/patrick-kidger/signatory
https://github.com/patrick-kidger/torchcde
https://github.com/jambo6/neuralRDEs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Thank you
for your attention!

and for more details, see

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

References II

S. Liao, T. Lyons, W. Yang and H. Ni. Learning stochastic differential
equations using RNN with log signature features.
arXiv:1908.08286, 2019.

J. Morrill, C. Salvi, P. Kidger, J. Foster and T. Lyons. Neural Rough
Differential Equations for Long Time Series. Proceedings of the 38th
International Conference on Machine Learning (ICML), 2021.

P. Kidger, J. Morrill, J. Foster and T. Lyons. Neural Controlled
Differential Equations for Irregular Time Series. In Advances in
Neural Information Processing Systems, 2020.

J. Morrill, P. Kidger, L. Yang and T. Lyons. Neural Controlled
Differential Equations for Online Prediction Tasks.
arXiv:2106.11028, 2021.

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 6 July 2021 19 / 19

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 15 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

1 Signatures and Log-signatures

2 Neural Controlled Differential Equations

3 Neural Rough Differential Equations

4 Conclusion

5 References

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 16 / 18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

References I

J. Morrill, A. Fermanian, P. Kidger and T. Lyons. A Generalised
Signature Method for Multivariate Time Series Feature Extraction.
arXiv:2006.00873, 2020.

P. Kidger and T. Lyons. Signatory: differentiable computations of
the signature and logsignature transforms, on both CPU and GPU.
In International Conference on Learning Representations, 2021.
https://github.com/patrick-kidger/signatory

J. Diehl, T. Lyons, R. Preiß and J. Reizenstein. Areas of areas
generate the shuffle algebra. arXiv:2002.02338, 2020.

J. Reizenstein. Calculation of Iterated-Integral Signatures and
Log Signatures. arXiv:1712.02757, 2017.

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 17 / 18

https://arxiv.org/abs/2006.00873
https://github.com/patrick-kidger/signatory
https://arxiv.org/abs/2002.02338
https://arxiv.org/abs/1712.02757

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

References II

S. Liao, T. Lyons, W. Yang and H. Ni. Learning stochastic differential
equations using RNN with log signature features.
arXiv:1908.08286, 2019.

J. Morrill, C. Salvi, P. Kidger, J. Foster and T. Lyons. Neural Rough
Differential Equations for Long Time Series. Proceedings of the 38th
International Conference on Machine Learning (ICML), 2021.

P. Kidger, J. Morrill, J. Foster and T. Lyons. Neural Controlled
Differential Equations for Irregular Time Series. In Advances in
Neural Information Processing Systems, 2020.

J. Morrill, P. Kidger, L. Yang and T. Lyons. Neural Controlled
Differential Equations for Online Prediction Tasks.
arXiv:2106.11028, 2021.

James Foster (DataSıg and Oxford) Log-signatures and Neural RDEs 7 July 2021 18 / 18

https://arxiv.org/abs/1908.08286
https://arxiv.org/abs/2106.11028

	Signatures and Log-signatures
	Neural Controlled Differential Equations
	Neural Rough Differential Equations
	Conclusion
	References

